HS25N

TELLERT ELEKTRONIK

General

The corresponding GNSS receivers will be labeled with HSx in the following text. They differ essentially in the corresponding integrated GNSS module.

The *HSx* box processes the NMEA sentences VTG, GGA and ZDA of the integrated GNSS receiver unit. Beside the serial NMEA output (with 115200 baud), it additionally provides the horizontal speed, driving direction, height, position, longitudinal acceleration, angular speed, traverse acceleration, slope angle, curve radius, total acceleration and quality of the GNSS measurement data via a three-line display, via a voltage output, via a frequency output and via a CAN bus, where interpolated values are used to output the corrected speed, the acquired acceleration and the driven distance every 20 ms. Furthermore, driving performance measurements can be made directly.

Figure 1: GNSS receiver HS25N.

Scope of Delivery

The scope of delivery of HSx contains:

- HSx box
- Connection cable with open ends for power supply and CAN bus
- GNSS antenna for the *HSx* box
- USB connection cable (virtual COM port)
- Adapter cable GNSS-Prog for USB connection cable to program and configure the GNSS receiver unit (which is usually not necessary), and [not for HsxD/HsxF¹] for the NMEA ouptut
- [HsxD/HsxF only:] Adapter cable GNSS-NMEA for USB connection cable to connect with the NMEA output

Accessory

Not within the scope of delivery are:

1 *HSxD/HSxF*: GPS receiver HS10D, HS20D, HS20F, HS50D or HS50F

- vacuum cup VC10
- power adapter PA
- low speed CAN adapter LCC719

Voltage Output

The voltage consists of a 12-bit D/A converter which can output voltages within the range from 0 V to 5 V. It has an internal resistance R_i of 1 k Ω . The linearity and offset error are max. 20 mV. At the moment, the current total acceleration is output as a linear voltage signal: 0 m/s² \Rightarrow 2.5 V and 15 m/s² \Rightarrow 5 V.

The voltage signal is at the LCD page *longitudinal acceleration* the magnitude of signal *GS2_Acceleration*, at the LCD page *traverse acceleration* the magnitude of signal *GS4_TraverseAcceleration*, and at the other LCD pages the signal *GS4_TotalAcceleration*.

Frequency Output

The frequency output provides a square-wave signal with 0 V or 5 V levels and a 50 % duty cycle. It has an internal resistance R_i of 1 k Ω . At the moment, the current speed is output as a linear frequency signal with 10 Hz per km/h and with an offset of 100 Hz: 0 km/h \mapsto 100 Hz and 100 km/h \mapsto 1100 Hz.

The frequency signal is the signal *GS3_SpeedInt*, which is updated every 20 ms.

Operating Modes

The *PAGE* button is used to switch the pages of the LCD display. With releasing the button after holding it down for a longer period of time, sometimes a corresponding action (usually a reset) is triggered, or, at the last page (with the NMEA message counters), the background light is turned on and off.

After turning on, the display page *Driving dynamics* is automatically selected as soon as the GNSS signals are valid.

HS25N

Info:

HS25N V3.2.0 ascertaine Bat: 12.0 V measured 23:59:59 ▲ local time

ascertained device type / firmware version measured power supply local time

Driving dynamics:

100 kp	ph 2	240m	speed / height
в 9.8	R	0.1	longitudinal acc. / traverse acceleration
200m	1°	8↑∎	curve radius / slope angle / num. of satellites

GNSS status:

 100.00 km/h
 speed

 240 m 359°
 height / direction

 Q2 S8 H1.0↑■
 quality / number of satellites / HDOP

Longitudinal acceleration:

100.00 km/h speed -9.81 m/s² acceleration 70 m ↑■ distance

Traverse acceleration:

100.00 km/h	speed
0.14 m/s²	traverse acceleration
200 m 1°T ^∎	curve radius / slope angle

Position:

50.00000	°N	latitude
10.00000	°E	longitude
240.0 m	∕↑∎	height

Acceleration measurement (A: 0...100 km/h):

Waiting for satellite signals:

43.85	km/h	current speed
Waiting	for	
sat	A∱∎	measurement A

Preparing measurement:

43.85 km/h	current speed
Waiting for	
< 5 km/h A ↑∎	measurement A

Waiting for start of measurement:

	0.00	km/h	current speed
Wai	ting	for	
≥ 5	km/h	n A ↑∎	measurement A

Measurement in progress:

51.71 k	cm/h	current speed
30.58 n	n	progressing distance
4.07 s	A↑∎	progressing time / measurement A

Result:

2.97	m/s²	average acceleration
146.11	m	required distance
9.34 s	A♠	required time / measurement A

Braking measurement (B: 100...0 km/h):

Waiting for satellite signals:

43.85	km/h	current speed
Waiting	for	
sat	B∱∎	measurement B

Preparing measurement:

43.85 km/h	current speed
Waiting for	
>100km/h B ↑∎	measurement B

Waiting for start of measurement:

123.51	km/h	current speed
Waiting	for	
≤100km/h	n B ↑∎	measurement B

Measurement in progress:

48.95 km/h	current speed
33.57 m	progressing distance
1.62 s B ↑∎	progressing time / measurement B

Result:

-8.52	m/s²	average acceleration
43.89	m	required distance
3.26 s	B↑∎	required time / measurement B

400 m measurement (D: 0...400 m):

Waiting for satellite signals:

43.85	km/h	current speed
Waiting	for	
sat	D↑∎	measurement D

Preparing measurement:

43.85 km/h	current speed
Waiting for	
< 5 km/h D ↑∎	measurement D

Waiting for start of measurement:

0.00 km/	/h current speed
Waiting for	r
≥ 5 km/h I	on∎ measurement D

Measurement in progress:

50.21	km/h	current speed
13.14	m	progressing distance
1.95 s	DA	progressing time / measurement D

Result:

4.68	m∕s²	average acceleration
197.40	km/h	speed after 400 m
11.71 s	DA	required time / measurement D

NMEA sentences:

Tv:	40	ms	gap between VTG sentences
Tp:	40	ms	gap between GGA sentences
Cv01	Cp01	∕↑∎	sentence counters (VTG / GGA)

Driving Performance Meas.

The different measurements are constantly running in the background, and can be reset at any time by pressing the button longly (at the corresponding measurement page). The acceleration and 400 m measurement are reset together. Whereas the braking measurement is also automatically reset (when driving with more than 100 km/h). The measurements start (or end) at 5 km/h, where the time and distance difference (within the velocity-time graph) to 10 km/h is used for linear extrapolation to 0 km/h:

 $\Delta t_{0...5 \text{ km/h}} = | t_{10 \text{ km/h}} - t_{5 \text{ km/h}} |$ $\Delta s_{0...5 \text{ km/h}} = (5 \text{ km/h} \cdot \Delta t_{0...5 \text{ km/h}}) / 2$

Display (HDOP)

The HDOP value is displayed on each page in the lower right as a level meter:

Bars	HDOP	(AHDOP)	Comment
7	0.0 1.3	(+1.3)	best signal
6	1.4 1.8	(+0.4)	$1.4 \approx 1.3875^{1}$
5	1.9 2.6	(+0.7)	1.9 ≈ 1.3875 ²
4	2.7 3.6	(+0.9)	2.7 ≈ 1.3875 ³
3	3.7 5.0	(+1.3)	3.7 ≈ 1.3875⁴
2	5.1 7.0	(+1.9)	5.1 ≈ 1.3875⁵
1	7.1 9.8	(+2.7)	7.1 ≈ 1.3875 ⁶
0	9.9 9.9	(+0.0)	no satellites

Display (Direction)

The driving direction of the GNSS antenna is displayed directly left to the HDOP level meter as an arrow:

Arrow	Direction		Comment
\uparrow	337.5° 22.49°	Ν	
7	22.5° 67.49°	NE	
\rightarrow	67.5° 112.49°	Е	
Ы	112.5° 157.49°	SE	
\checkmark	157.5° 202.49°	S	
Ľ	$202.5^{\circ} \dots 247.49^{\circ}$	SW	
~	$247.5^\circ \dots 292.49^\circ$	W	
R	292.5° 337.49°	NW	
	(360°)		no direction

Signal Propagation Delay

Symbol	Description
T ₁₀	Repeat rate of 100 ms
T ₁₆	Repeat rate of 60 ms
T ₂₀	Repeat rate of 50 ms
T ₂₅	Repeat rate of 40 ms
T ₅₀	Repeat rate of 20 ms
T _{acc}	Time window setting for the acceleration cal- culation (= 640 ms).
T _{acc,x}	Time window for the acceleration calculation: $T_{acc,x} = \min(i \cdot T_x i \cdot T_x \ge T_{acc})$ with arbitrary integer <i>i</i> from 1 to 51 for the corresponding <i>HSx</i> box with $x \in \{10, 16, 20, 25, 50\}$
T _{avg,x}	Time window for moving average: $T_{avg,x} = T_{acc,x} - T_x$ where $x \in \{10, 16, 20, 25, 50\}$
T _{d,acc,x}	Delay of the acceleration signal: $T_{d,acc,x} = T_{acc,x} - T_x/2$ where $x \in \{10, 16, 20, 25, 50\}$
T _{d,avg,x}	Delay of average signal: $T_{d,avg,x} = (T_{acc,x} - T_x)/2$ where $x \in \{ 10, 16, 20, 25, 50 \}$
T _{GPS,x}	General delay of the GNSS signal for the corresponding HSx box with $x \in \{ 10, 16, 20, 25, 50 \}$

Signal Propagation Delay of HS25N

Signal name	Typical si delay	ignal propagation
GS2_Acceleration	740 ms	$T_{GPS,25}$ + $T_{d,acc,25}$
GS3_AccelerationInt	780 ms	$T_{GPS,25} + T_{d,acc,25} + T_{25}$
GS3_DistanceInt	160 ms	$T_{GPS,25} + T_{25}$
GS3_SpeedInt	160 ms	$T_{GPS,25} + T_{25}$
GS4	740 ms	$T_{GPS,25}$ + $T_{d,acc,25}$
All further GNSS sig- nals	120 ms	$T_{GPS,25}$
T ₂₅ T _{GPS,25} T _{acc}	40 ms 120 ms 640 ms	
$T_{acc,25} \mid T_{d,acc,25}$	640 ms 620 ms	
$T_{avg,25} \mid T_{d,avg,25}$	60	00 ms 300 ms

CAN

CAN default settings

CAN library	HSx 1.2
CAN baud rate	500 kbps
CAN sample point	80 %
Message basis ID	600h (11-bit std ID)
Message IDs	600h 607h

Bit numbering

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
70	158	2316	3124	3932	4740	5548	6356

A *HSx* CAN signal allocates the bit range (within the CAN message) from its start bit to start bit + bit length - 1. The bit numbering corresponds to the weight of the bits of an unsigned 64-bit number (with Intel byte order).

Message GS1 (ID: basis ID + 0 = 600h / Length: 8 bytes / Repetition rate: after each correctly received VTG sentence)

S ¹	D L	Description
0	u8	GS1_Counter: This counter is incremented with each new <i>GS1</i> message. The counter restarts after 255 with 0.
8	u8	GS1_Flags: Bit mask with following assingment:
		1: GS1_SpeedRaw not updated
		2: GS1_TrackRaw not updated
		4: GS4_SpeedAvg not updated
		8: GS2_Acceleration not updated
		16: Waiting for synchronization for signals GS2_Acceleration, GS3, and GS4_SpeedAvg.
		 32: VTG sentence received too early or too late.
16	u16	GS1_SpeedRaw: Raw (= untreated) speed signal (= v_R), directly taken from VTG sentence with a resolution of 0.01 km/h per bit.
32	u16	GS1_TrackRaw: Raw driving direction (= track made good) with a resolution of 0.01° per bit.
48	u16	GS1_Track: Driving direction after acceptance check ($v_R \ge v_{T,min}$ where $v_{T,min} = 2$ km/h) with a resolution of 0.01° per bit.

1 S: start bit

D: data type (u – unsigned Intel / s – signed Intel) L: bit length **Message GS2** (ID: basis ID + 1 = 601h / Length: 8 bytes / Repetition rate: after each correctly received VTG sentence)

S	D L	Description
0	u16	GS2_Speed: Speed signal (= v) after acceptance check, standing detection ($v_R \ge v_{min}$ with $v_{min} = 0.5$ km/h) and limited acceleration ($ a \le a_{max}$ where $a_{max} = 19.62$ m/s ²) with a resolution of 0.01 km/h per bit.
16	s16	GS2_Acceleration: Acceleration of the speed signal v with a resolution of 0.01 m/s ² per bit.
32	u32	GS2_Distance: Absolute distance counter since HSx box reset with a resolution of 0.01 m per bit.

Message GS3 (ID: basis ID + 2 = 602h / Length: 8 bytes / Repetition rate: 20 ms (10 ms by choice))

S	D L	Description
0	u16	GS3_SpeedInt: Interpolated speed signal with a resolution of 0.01 km/h per bit. This signal is linear interpolated from the last two values of signal <i>GS2_Speed</i> .
16	s16	GS3_AccelerationInt: Interpolated acceleration signal with a resolution of 0.01 m/s ² per bit. This signal is linear interpolated from the last two values of signal <i>GS2_Acceleration</i> .
32	u32	GS3_DistanceInt: Interpolated distance with a resolution of 0.01 m per bit. This signal is linear interpolated from the last two values of signal <i>GS2_Distance</i> .

Message GS4 (ID: basis ID + 3 = 603h / Length: 8 bytes / Repetition rate: after each correctly received VTG sentence)

S	D L	Description
0	s16	GS4_AngularSpeed: Angular speed with a resolution of 0.001 Hz per bit.
16	s16	GS4_TraverseAcceleration: Traverse acceleration a_{τ} with a resolution of 0.01 m/s ² per bit.
32	u16	GS4_Radius: Curve radius with a resolution of 0.1 m per bit.
48	u8	GS4_SlopeAngle: Slope angle with a resolution of 0.25° per bit.
56	u8	GS4_TotalAcceleration: Total acceleration, calculated from $\sqrt{a^2 + a_T^2}$, with a resolution of 0.1 m/s ² per bit.

Message GP1 (ID: basis ID + 4 = 604h / Length: 8 bytes / Repetition rate: after each correctly received GGA sentence)

S	D L	Description
0	u8	GP1_Counter: This counter is incremented with each GP1 message. The counter restarts after 255 with 0.
8	u4	GP1_Qual: GNSS quality indicator <i>HS25N</i> :
		0: GNSS data not available (or invalid)
		1: Valid GNSS data
		2: Valid DGNSS data
		4: RTK fixed
		5: RTK float
		6: Dead reckoning mode
12	u4	GP1_Flags: Bit mask with following assignment:
		1: GP1_Sat not updated
		2: <i>GP1_HDOP</i> not updated
		4: GP1_Synch not updated
		8: GP1_HeightRaw not updated
16	u6	GP1_Sat: Number of satellites in use. May be different to the number in view.
22	u2	GP1_Flags2: Bit mask with following assignment:
		1: GP2_LatitudeRaw not updated
		2: GP2_LongitudeRaw not updated
24	u8	GP1_HDOP: Horizontal dilution of precision with a resolution of 0.1 per bit.
32	u16	GP1_Synch: Part of the UTC time of the GGA sentence. Note, that only the backmost part m:ss.ss from the UTC time hh:mm:ss.ss is used with a resolution of 0.01 s per bit.
48	u16	GP1_HeightRaw: Raw antenna altitude above mean sea level with a resolution of 0.1 m per bit, and with an offset of -500 m.

Message GP2 (ID: basis ID + 5 = 605h / Length: 8 bytes / Repetition rate: at the earliest after each correctly received GGA sentence)

S	D L	Description
0	s32	GP2_LatitudeRaw: Raw latitude with a resolution of 1/600000 °N per bit.
32	s32	GP2_LongitudeRaw: Raw longitude with a resolution of 1/600000 °E per bit.

Message GP3 (ID: basis ID + 6= 606h / Lenth: 8 bytes / Repetition rate: at the earliest after each correctly received GGA sentence)

S	D L	Description
0	s32	GP3_Latitude: Latitude with a resolution of 1/600000 °N per bit. This signal is not updated when no satellites are available.
32	s32	GP3_Longitude: Longitude with a resolution of 1/600000 °E per bit. This signal is not updated when no satellites are available.

Message GP4 (ID: basis ID + 7= 607h / Length: 8 bytes / Repetition rate: after each correctly received GGA sentence)

S	D L	Description
0	u8	GP4_VBat: Measured supplying voltage of the $HSxD$ with a resolution of 0.2 V per bit (and internally measured up to 35 V).
8	u8	GP4_Sec: Local time with a resolution of 1 s per bit in the range of 059 s.
16	u8	GP4_Min: Local time with a resolution of 1 minute per bit in the range of 059 minutes.
24	u8	GP4_Hours: Local time with a resolution of 1 hour per bit in the range of 023 hours.
32	u8	GP4_UTCMin: UTC time with a resolution of 1 minute per bit in the range of 059 minutes.
40	u8	GP4_UTCHours: UTC time with a resolution of 1 hour per bit in the range of 023 hours.
48	u16	GP4_UTC: UTC time with a resolution of 2 s per bit in the range of 023 hours.

Message GP5 (ID: 608h / Length: 4 bytes / Repetition rate: with every new *GP5_Slope* value, meaning after *GP5_DistanceDelta* meters)

S	D L	Description
0	s16	GP5_Slope: Distance slope in percent with a resolution of 0,01 %.
16	u16	GP5_DistanceDelta: Distance difference for the acquisition of <i>GP5_Slope</i> in cm.

Message GT1 (ID: 609h / Length: 5 bytes / Repetition rate: after each correctly received ZDA sentence)

S	D L	Description
0	0 u7 GT1_HSec: UTC time with a resolution hundredth seconds per bit. in the rar 099 hundredth seconds.	
7	u6	GT1_Sec: UTC time with a resolution of 1 second per bit in the range of 059 seconds.
13	u6	GT1_Min: UTC time with a resolution of 1 minute per bit in the range of 059 minutes.
19	u5	GT1_Hours: UTC time with a resolution of 1 hour per bit in the range of 023 hours.
24	u5	GT1_Days: UTC time with a resolution of 1 day per bit in the range of 131 days.
29	u4	GT1_Months: UTC time with a resolution of 1 month per bit in the range of 112 months.
33	u7	GT1_Years: UTC time with a resolution of 1 year per bit in the range from 099 years with offset 2000.

HS25N

Connectors

The socket and plugs of the *HSx box* are from the <u>Binder Series 719</u>. The socket pins are (in frontal view) numbered clockwise, starting with the first pin after the notch. The plug pins are correspondingly numbered anti-clockwise.

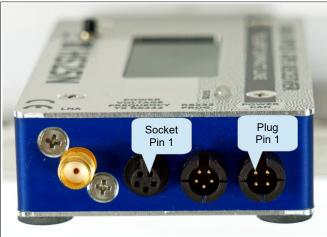


Figure 2: Connectors of the GNSS receiver HS25N.

LNA: The LNA connector is of type SMA, and connects the *HSxD* with an active GNSS antenna. It is temporarily short-circuit proof due to its internal resistance of $Ri = 50 \Omega$. The active GNSS antenna is supplied with 5 V DC.

POWER/CAN: This plug provides the *HSx* box with power and connects it with the CAN bus.

Pin	Assignment
1	Power supply (from 8 V DC to 30 V DC; inverse- polarity and voltage spike protected) (Wire color: brown)
2	Ground (Wire color: white)
3	CAN_L (Wire color: blue)
4	CAN_H (Wire color: black)

Note: The *HSx* box does not possess a CAN bus termination resistor. Therefore, it must be made sure that the CAN bus is properly ended, twice with a 120 Ω resistor (, or once with a 60 Ω resistor,) between CAN_L and CAN_H. **RS232/PROG:** This plug connects the *HSx* box with two serial ports.

Pin	Assignment
1	Serial transmit wire to program the <i>HSx</i> box
2	Ground (internally connected with pin 2 of con- nector POWER/CAN)
3	Serial receive wire to program the <i>HSx</i> box
4	Serial transmit wire to program and to configure the GNSS receiver unit, [not for HSxD/HSxF:] and for output of the NMEA messages with 115200 baud (internally connected with pin 5 of connector POWER/VOLTAGE/FREQUENCY/TX RS232)
5	Serial receive wire to program and to configure the GNSS receiver unit

POWER/VOLTAGE/FREQUENCY/TX RS232: This socket is optionally used to supply power to the *HSx* box, and it also provides the analog, digital, and NMEA output.

Pin	Assignment
1	Power supply (from 8 V DC to 30 V DC; inverse- polarity and voltage spike protected; internally connected with pin 1 of connector POWER/CAN)
2	Ground (internally connected with pin 2 of connector POWER/CAN)
3	Voltage output (05 V; internal resistance $Ri = 1 \text{ k}\Omega$; 12-bit D/A converter; linearity and off- set error: max. 20 mV)
4	Digital output (0 V / 5 V; 50 % duty cycle; internal resistance $Ri = 1 k\Omega$)
5	Serial transmit wire (Output of the NMEA sentences at 115200 baud)

Technical Data (HS*x* Box)

Property	Description
Box length/width:	84 mm × 52 mm (+ 6 mm for connectors)
Power supply:	From 8 V DC to 30 V DC
NMEA output:	VTG, GGA and ZDA sentences with 115200 bps.
CAN:	1 high speed CAN channel (CAN 2.0B) with a max. baud rate of 1 Mbps
Analog output sig- nal::	05 V 12-bit D/A converter Internal resistance $Ri = 1 \text{ k}\Omega$ (Linearity and offset error: max. 20 mV)
Digital output sig- nal:	Frequency signal (square wave with 0 V / 5 V, and with a 50 % duty cycle) Internal resistance $Ri = 1 \text{ k}\Omega$
LED (Status):	Green: GNSS receiver unit delivers valid values. Red: GNSS receiver unit not yet ready.
Button (Page):	Button to switch the LCD pages, and when pressed longer, to trig- ger an action (usually a reset), or to turn the background light on and off (at the last LCD page).

HS25N

Figure 3: GNSS receiver HS25N.

Further technical data:

Poperty	Description
Box height:	19 mm (+ 3 mm for buttons/burlings)
Typical weight:	103 g
Display:	3-line LCD display with 16 char- acters per line
Typical current con- sumption (without backlight):	121 mA (110 mA) at 8 V DC 83 mA (75 mA) at 12 V DC 62 mA (56 mA) at 16 V DC 44 mA (40 mA) at 24 V DC 37 mA (34 mA) at 30 V DC
Typical power con- sumption (without backlight):	1.0 W (0.9 W) at 8 V DC 1.0 W (0.9 W) at 12 V DC 1.0 W (0.9 W) at 16 V DC 1.1 W (1.0 W) at 24 V DC 1.1 W (1.0 W) at 30 V DC
Refresh rate:	25 Hz
GNSS module:	NEO-M9N (from u-blox)

GNSS receiver unit (according to u-blox):

Property	Description
Chip set:	u-blox NEO-M9N
Sensitivity:	Tracking & navigation: -167 dBm Reacquisition: -160 dBm Cold/warm start: -148 dBm Hot start: -159 dBm
First sample:	After 2 s (and in worst case after 42 s)
Speed accuracy:	0.05 m/s (50 % @ 30 m/s)
Direction accu- racy:	0.3°
Position accu- racy:	2.5 m CEP

See also

https://www.u-blox.com/en/product/neo-m9n-module

Internet

Most recent firmware and data sheet of the *HSx* box: <u>http://tellert.de/?product=hsx</u>

Most recent device driver and installation guides for the USB connection cable USBSER/B719K5: http://tellert.de/?product=usbser

Information about GNSS receiver unit used by *HSx* box: <u>http://tellert.de/?product=hsx-gps</u>

Information about Binder connectors: http://tellert.de/?product=b719

Figure 4 presents five different connection plans. Plan A is for the CAN connection of a HSx with the CAN2 connector of a data logger or a signal converter. Plan B is for the RS232 connection of a HSx with a data logger or signal converter. Plan C is for the RS232 connection of a DDD1 with a data logger or signal converter. Plan D is for the RS232 connection of a DDD1 with a HSx. Plan E is for connecting two DDD1 with one common GNSS antenna. In this case, the GNSS antenna must be connected to the DDD1 master. For plan A to D, the

GNSS receiver is turned on/off with the slider of the main device. From the two plans A and B, plan B is recommended, if the main device is a SICOLOG/SICO3/USBDL1 variant.

Plan F is a Y distributor cable for the concurrent connection of an external display (e. g. *ED4 RS232*) and a GNSS receiver (via NMEA) to a data logger or signal converter. An additional cable "B" (= plan "B") is required for GNSS receiver *HSx*.

In Figure 4, GPS16G stands also for GNSS25N.

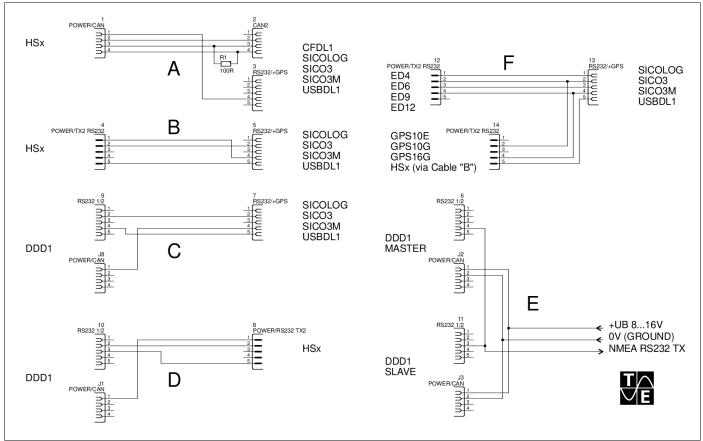


Figure 4: Connection plans.